Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 23(22): 11027-33, 2007 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-17902711

RESUMO

Self-assembled monolayers (SAMs) of 6-mercaptopurine (6MP) have been prepared on a Au(111) single-crystal electrode by immersion of the metal surface in a 100 microM 6MP and 0.01 M HClO4 solution. The 6MP-SAM Au(111) single-crystal electrodes were transferred to the cell and allowed to equilibrate with the different aqueous working solutions before the electrochemical experiments. The influence of the solution pH was studied by cyclic voltammetry, double layer capacitance curves, and electrochemical impedance spectroscopy. The electrochemical behavior of the 6MP-SAM in acetic acid at pH 4 presents important differences in comparison to that obtained in 0.1 M KOH solutions. Cyclic voltammograms for the reductive desorption process in acid medium are broad and show some features that can be explained by a phase transition between a chemisorbed and a physisorbed state of the 6MP molecules. The low solubility of these molecules in acid medium could explain this phenomenon and the readsorption of the complete monolayer when the potential is scanned in the positive direction. The variation of the double-layer capacitance values in the potential range of monolayer stability with the pH suggests that the acid-base chemistry of the 6MP molecules is playing a role. This fact has been studied by following the variations of the electron-transfer rate constant of the highly charged redox probes as are Fe(CN)(6)-3/-4 and Ru(NH3)(6)+3/+2 as a function of solution pH. The apparent surface pKa value for the 6MP-SAM (pKa approximately 8) is explained by the total conversion of the different 6MP tautomers that exist in solution to the thiol species in the adsorbed state.

2.
J Phys Chem B ; 110(36): 17840-7, 2006 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-16956270

RESUMO

6-Mercaptopurine-coated gold nanoparticles (6MP-AuNPs) have been prepared by modification of the nanoparticle surface with 6MP upon displacement of the protective layer of citrate anions. The modification has been studied by UV-vis and FTIR spectroscopies. A study of the stability of these 6MP-AuNPs in aqueous solutions as a function of ionic strength and pH has shown the importance of the charges on the stabilization. The protonation of N9 of the 6MP molecules brings about a sudden flocculation phenomenon. However, the flocculation is reversible upon changing the pH to values where the molecules become newly charged. Evidence of the competence between the interaction of capping solvent molecules and the attractive forces between particles is also shown in this paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...